Distributed Privacy-Protecting Routing in DTN: Concealing the Information Indispensable in Routing *

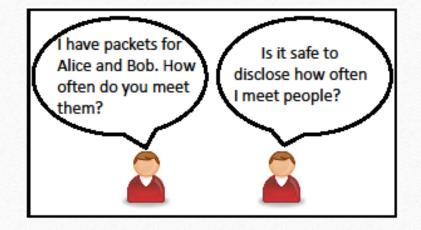
Kang Chen¹ and Haiying Shen² ¹Dept. of ECE, Southern Illinois University, IL, USA ²Dept. of CS, University of Virginia, VA, USA

* Majority was done when at Clemson

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

- Delay/Disruption Tolerant Networks (DTNs)
 - A challenging form of mobile network
 - Nodes are sparsely distributed
 - Opportunistic node encountering
 - No infrastructure, only Peer-to-Peer communication
- Network Features
 - Limited resources
 - Frequent network partition and disconnection
 - End-to-end path cannot be ensured


- Routing is possible
 - Often in a store-carry-forward manner

- Utility based routing principle
 - Define a utility that represents how likely to meet a node (directly) or deliver a packet to a node (indirectly)
 - When two nodes meet, they exchange and compare routing utilities for each destination, and always forward a packet to the node with a higher utility value
- Common utility definitions
 - Meeting frequency; social closeness; network centrality, etc.

- Privacy concerns
 - Those routing utilities contain much private information
 - Meeting frequency, social relationship, locations, etc.
 - More severe in DTNs involving human-operated devices
 - Pocket switched network, Vehicular DTNs, etc.
 - Malicious nodes could take advantage of them
 - Fabricate routing utilities to attract and drop packets
 - Disseminate virus to specific targets or locations

- Challenges
 - On one side, disclosing routing utilities is not privacy preserving
 - On the other side, DTN routing requires nodes to exchange such information
- Goal
 - Harmonizing both needs
 - Anonymizing such information by
 - Carefully disclosing partial routing utility information that is enough for correct routing
 - Altering the packet forwarding sequences

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

- Some definitions
 - Routing utility: $U_{ij} = \{n_i, n_j, v_{ij}\},\$
 - v_{ij} denotes n_i 's utility value for n_j
 - Commutative encryption: *E*(·)
 - $E_{k_1}(E_{k_2}(M)) = E_{k_2}(E_{k_1}(K))$ for encryption key k_1 and k_2
 - Order-preserving hashing: H(·)
 - If $v_1 > v_2$, $H(v_1) > H(v_2)$

- Observations
 - $U_{ij} = \{n_i, n_j, v_{ij}\}$ is anonymized when any of the three elements is anonymized (assume enough nodes in the network)
 - To ensure correct routing, two nodes just need to know the order of their utility values for the same destination
- Solution
 - Nodes exchange partially encrypted/hashed routing utility
 - Nodes could identify and compare routing utility for the same destination node
 - But at least one of three element is not disclosed to the other node

- Illustration scenario
 - n_1 meets n_2 for packet forwarding
 - n_1 is selected as the node that will do utility comparison
 - n_1 pick key k_1 and hashing function H_1 , n_2 pick key k_2 and hashing function H_2

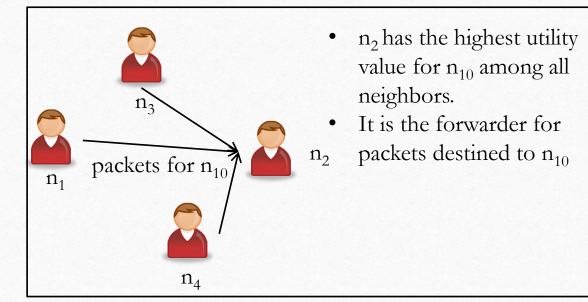
$$n_{1} \rightarrow n_{2} : U_{1x}' = (n_{1}, E_{k_{1}}(n_{x}), v_{1x})$$

$$n_{2} \text{ generates } U_{1x}'' = (n_{1}, E_{k_{2}}(E_{k_{1}}(n_{x})), H_{2}(v_{1x}))$$

$$n_{2} \rightarrow n_{1} : U_{1x}''$$

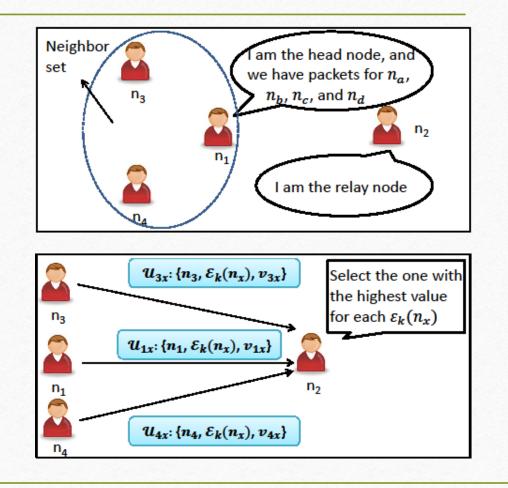
 $n_{2} \rightarrow n_{1}: U_{2x}' = (n_{2}, E_{k_{2}}(n_{x}), H_{2}(v_{2x}))$ $n_{1} \text{ generates } U_{2x}'' = (n_{2}, E_{k_{1}}(E_{k_{2}}(n_{x})), H_{2}(v_{2x}))$

- Step 2 n₁ now has U''_{1x} = (n₁, E_{k₂}(E_{k₁}(n_x)), H₂(v_{1x})) U''_{2x} = (n₂, E_{k₁}(E_{k₂}(n_x)), H₂(v_{2x})) Due to commutative encryption, routing utilities with the same n_x could be identified Due to order-preserving hashing, their utility values (H₂(v_{1x}) and H₂(v_{2x})) could be compared
- Step 3 n_1 informs n_2 those destinations that it has a higher utility value $n_1 \rightarrow n_2 : E_{k_2}(n_x)$ if $H_2(v_{1x}) > H_2(v_{2x})$


 n_2 decrypts and knows that n_1 is the forwarder for which dest. and informs n_1 It further knows itself is the forwarder for which dest.

• Summary

Node	Information
n_1	$ \begin{array}{c} \mathcal{U'}_{1x} : \{\mathcal{E}_{k_1}(n_x), v_{1x}, n_1\} \\ \mathcal{U''}_{1x} : \{\mathcal{E}_{k_2}(\mathcal{E}_{k_1}(n_x)), \mathcal{H}_2(v_{1x}), n_1\} \\ \mathcal{U'}_{2x} : \{\mathcal{E}_{k_2}(n_x), \mathcal{H}_2(v_{2x}), n_2\} \\ \mathcal{U''}_{2x} : \{\mathcal{E}_{k_1}(\mathcal{E}_{k_2}(n_x)), \mathcal{H}_2(v_{2x}), n_2\} \end{array} $
n_2	$ \begin{array}{c c} \mathcal{U'}_{2x} : \{ \mathcal{E}_{k_2}(n_x), \mathcal{H}_2(v_{2x}), n_2 \} \\ \mathcal{U'}_{1x} : \{ \mathcal{E}_{k_1}(n_x), v_{1x}, n_1 \} \\ \mathcal{U''}_{1x} : \{ \mathcal{E}_{k_2}(\mathcal{E}_{k_1}(n_x)), \mathcal{H}_2(v_{1x}), n_1 \} \end{array} $


- Anonymity is attained:
 - Each node can only get the utilities with at least one element encrypted/hashed
- Routing is ensured
 - Routing utilities are successfully compared

- Forwarder
 - The node that holds the packet (i.e., the node with the highest utility for the destination of the packet)
 - Such information is private too
 - Targeting a specific destination by tracking packets destined to the destination

- How to protect such forwarder information?
 - Forwarder information contains two parts: <dest., forwarder>
 - Hide one by changing the process of routing utility comparison and packet forwarding
 - Choose a relay node among the group of encountered nodes
 - The relay node knows the forwarder for each **encrypted** destination
 - Only applies when a group of nodes meet
 - No way to hide when only two nodes meet

- Illustration scenario
 - n_1, n_2, n_3, n_4 meet for packet forwarding
 - n_2 is selected as the relay node, the remaining form the Neighbor set
 - n_1 is the head of the neighbor set and decides a group key k_n
- Step 1
 - Each node in the neighbor set encrypts its routing utility with k_n and send to n_2

• Step 2

 n_1 and n_2 compare routing utilities from the neighbor set and those on n_2 following the method for Utility Anonymity.

• Step 3

 n_2 builds a relay table as the following

k_n -encrypted destination	Forwarder
$\mathcal{E}_{k_n}(n_a)$	n_1
$\mathcal{E}_{k_{n}}(n_{c})$	n_3
$\mathcal{E}_{k_{n}}(n_{d})$	n_4

• Step 4

 n_1, n_3 , and n_4 encrypt its packets' destination with k_n and send to n_2 for relay

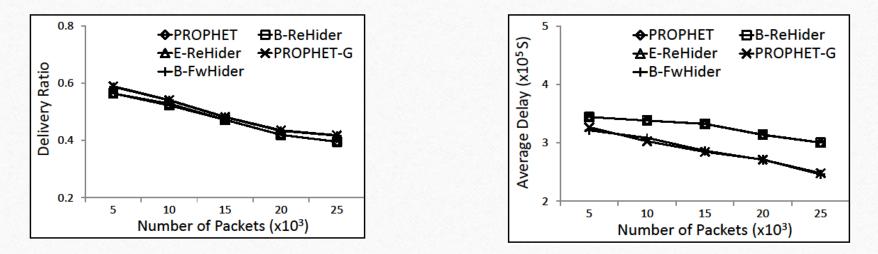
 n_2 searches the relay table and forward the packet if there is a hit, or keep the packet if not (itself is the forwarder)

• Summary

- n_2 only knows the forwarder for each k_n -encrypted destination, so it cannot know the complete forwarder information
- Others only know that packets are relayed by n_2

Outline

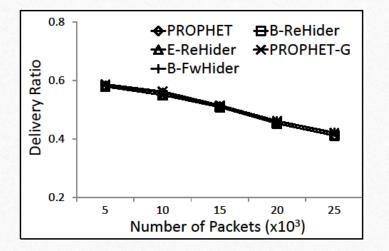
- Introduction
- System Design
- Performance Evaluation
- Conclusion

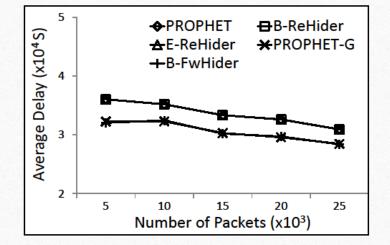

Evaluation

- Traces
 - Haggle: encountering of mobile devices in a conference
 - MIT Reality: encountering of mobile devices on a campus
- Methods
 - Privacy protection is analyzed in the paper
 - Measuring the routing performance with the proposed methods
 - Using PROPHET* as the baseline routing algorithm
 - PROPHET-G denotes extended pair-wise encountering assumption

*A. Lindgren, A. Doria, and O. Schelen, Probabilistic routing in intermittently connected networks. Mobile Computing and Communications Review, vol. 7, no. 3, 2003.

Evaluation : Routing Performance


• MIT Reality trace



- B-ReHider and E-ReHider indicate utility anonymity and its extended version
- B-FwHider and E-FwHider indicate forwarder anonymity and its extended version
- Routing efficiency is not affected with the privacy protection schemes

Evaluation : Routing Performance

• Haggle trace

• The same result as in the MIT Reality trace

Conclusion

- Routing utilities in DTNs contain much privacy information but need to be disclosed for correct routing
- Solution:
 - Careful encryption to let nodes only share partial utility information that is enough for correct routing
 - Altering the packet forwarding sequences to further anonymity forwarder information
- Future work:
 - Energy consumption
 - Loose the limit and allow a white-list

Thank you! Questions & Comments?